
Not So Secure TSC

Jonas Juffinger, Sudheendra Raghav Neela, and Daniel Gruss

Graz University of Technology, Austria

Abstract. Modern cloud environments greatly facilitate efficiency as
workloads of multiple tenants running on the same physical system, of-
ten grouped by functionality, e.g., function-as-a-service containers, or
platform-as-a-service virtual machines. However, the sharing of physi-
cal hardware resources across mutually distrusting tenants comes with
security implications. Consequently, cloud providers also offer higher se-
curity levels with trusted execution environments in the form of confi-
dential virtual machines, e.g., Intel TDX and AMD SEV-SNP. Many
works have shown that attackers can exploit microarchitectural side
channels in cloud scenarios, including attacks on trusted-execution envi-
ronments. However, the practical relevance of these attacks hinges on the
co-location of the attacker with its victim on the same physical machine
within the data center. Prior work has presented co-location detection
techniques that work inside containers or on regular virtual machines.
However, co-location detection techniques for confidential virtual ma-
chines, e.g., AMD SEV-SNP, have not been studied yet, as these have
to be performed from within AMD SEV-SNP virtual machines to target
the same physical host machine.

In this paper, we present the first co-location detection technique working
on confidential virtual machine hosts. We exploit the new SecureTSC
feature supported on recent AMD processors with SEV-SNP. SecureTSC
is intended to provide a trusted timing source to confidential virtual
machines that cannot be tampered with by the host. We systematically
study the behavior of SecureTSC and show that it can be exploited
to detect whether two confidential virtual machines are co-located. We
demonstrate our co-location detection in a concrete scenario, where two
confidential virtual machines attempt to co-locate with each other. Our
attack uses a minimal network protocol, TsCupid, to determine whether
any of the connected confidential virtual machines are co-located. We
practically evaluate our attacks and show that we can detect co-location
within 0.13 seconds in a fully parallelized way, minimizing the cost for
an attack. Finally, we show that our attack cannot be mitigated without
modifying the SecureTSC feature and propose a concrete design change
that would fully prevent our attack.

Keywords: Side Channels, Timing Attack, Co-Location Attack, AMD
SEV, Confidential Computing

1 Introduction

The efficiency and economic advantages of cloud computing and virtualization
are rooted in the sharing of physical resources. Today, various types of cloud com-
puting exist, often categorized into function-as-a-service, software-as-a-service,
platform-as-a-service, and infrastructure-as-a-service. The idea for all types is
similar: Place workloads of the same type but from different tenants on the
same physical machine and share as many physical resources as possible while
maintaining confidentiality, integrity, and availability, of the customer’s data and
workloads. As a consequence, a long line of work studied the security proper-
ties of workloads in cloud environments, in particular in terms of side-channel
attacks [10, 44, 60, 68, 73, 74] as well as their mitigation [33, 42, 72]. These at-
tacks typically monitor the usage of a shared hardware resource and exfiltrate
secret information based on the observed behavior, e.g., timing [30], or access
patterns [44].

Beyond distrusting other co-located tenants, customers of cloud computing
may also distrust the cloud provider [59] or have legal restrictions on how and
where their data may be processed [50]. Consequently, the concept of trusted exe-
cution environments was developed [8, 18] and implemented in billions of proces-
sors, e.g., Arm TrustZone [8], Intel SGX [15], AMD SEV [32], and Intel TDX [27].
Today, commercial cloud providers already offer confidential virtual machines,
e.g., using AMD SEV or Intel TDX, typically in an platform-as-a-service model.
However, while these confidential virtual machines promise higher security, they
are still susceptible to side-channel attacks as demonstrated in many scientific
works [12, 37–39, 62]. Moreover, the lack of a trusted timing source in trusted
execution environments limits use cases that require a trusted timing source,
especially those that rely on time for security-critical decisions [1, 7], including
defenses against privileged attackers that resort to busy-looping timing threads
instead [13, 49]. This changed with AMD’s introduction of the SecureTSC fea-
ture1, providing a trusted, non-malleable timing source to confidential virtual
machines, allowing to detect manipulations from the untrusted outside.

While the side-channel attacks themselves may be practical, their practical
relevance often hinges on the attack scenario. In particular, attacks on virtual
machines of other tenants in modern public cloud environments, require co-
location, which is challenging to achieve for multiple reasons: First, given the
massive expansion rate of cloud computing, and growing sizes of data centers,
the a priori probability of co-location is shrinking. Consequently, an attacker has
to spawn more containers or virtual machines to possibly achieve co-location.
Second, cloud providers have systematically eliminated prior channels for co-
location detection [26], requiring attackers to resort to new and less reliable
side-channel-based co-location detection [25]. Third, the resource provisioning
of cloud providers limits the possible co-location targets: Cloud vendors typi-
cally dedicate entire servers to one type of workload, e.g., function-as-a-service or
platform-as-a-service. Furthermore, resource provisioning systems monitor work-

1 Intel introduced an equivalent feature dubbed “Virtual TSC” [29].

loads and dynamically move similar workloads to the same physical machine to
optimize the utilization of hardware resources [43]. Consequently, to perform
side-channel attacks on co-located confidential virtual machines, the attacker
needs to detect co-location and mount the attack from inside a confidential vir-
tual machine. However, co-location detection techniques for confidential virtual
machines, e.g., AMD SEV-SNP, have not been studied yet.

In this paper, we present the first co-location detection technique working on
confidential virtual machine hosts. We systematically study the behavior of the
new SecureTSC feature supported on recent AMD processors with SEV-SNP
support. Furthermore, we show that SecureTSC can be utilized as a reliable
mechanism for co-location detection. We devise a minimal network protocol,
TsCupid, which solves the challenges to this co-location detection, using a cen-
tral coordination server, adjusting for various factors influencing the timestamp
counter values and by threshold-comparing normalized timestamps across all
connected confidential virtual machines.

We evaluate our co-location detection technique in a realistic scenario on an
AMD Epyc 7313P (Zen 3, Milan microarchitecture), as public cloud vendors are
still in the process of adopting SecureTSC and enabling it for customers. We
focus on a scenario where two confidential virtual machines attempt to co-locate
with each other. We demonstrate that, based on the SecureTSC values, we can
correctly and reliably detect co-location on the same physical system within 0.13
seconds.

Finally, we show that our attack cannot be mitigated without modifying
the SecureTSC feature. As long as the attacker has access to the unperturbed
rdtsc value as a timing source, the scaling register, and the offset field, an
attack remains possible. We propose a concrete design change that would fully
prevent our attack while maintaining rdtsc as a trusted and non-malleable
timing source.

In summary, this paper makes the following contributions:

– We present the first co-location detection technique on confidential virtual
machines, exploiting the novel SecureTSC feature on AMD SEV-SNP pro-
cessors.

– We develop a scalable methodology for co-location using our detection tech-
nique and analyze its costs on the AWS cloud and the Google Cloud Platform.

– We practically evaluate our co-location detection on an AMD Epyc 7313P
system with SEV-SNP and SecureTSC enabled. We correctly detect co-
location within 0.25 seconds with a success rate above 99.56% with a 0.13
seconds detection threshold.

– We propose a design change for SecureTSC that fully mitigates our attack
while maintaining the functionality of SecureTSC, by moving certain values
and operations to AMD’s security processor (AMD-SP).2

Outline. Section 2 provides background on trusted-execution environments,
side channels, co-location detection, and SecureTSC. Section 3 presents the high-

2 AMD-SP and PSP are sometimes used interchangeably in the literature and official
documentation.

level idea of our co-location detection. Section 4 presents the design and imple-
mentation. Section 5 evaluates our co-location detection in a realistic scenario on
an AMD Epyc 7313P machine with SEV-SNP and SecureTSC enabled. Section 6
discusses potential mitigations to prevent co-location detection. We conclude our
work in Section 7.

Responsible Disclosure to AMD. We reported using SecureTSC for co-
location detection to AMD on March 14th, 2024. We further showed our findings
using the TsCupid protocol on April 29th, 2024. AMD acknowledged our findings
and concluded that this was outside their current threat model for SecureTSC.

2 Background

In this section, we provide background on trusted execution environments, side-
channel attacks and co-location detection, as well as the novel SecureTSC fea-
ture.

2.1 Security of Trusted Execution Environments

The trusted computing base is the minimal set of hardware and software com-
ponents that a user or workload has to trust. If the trusted computing base is
compromised, the workload or the user’s data may be compromised as well. Tra-
ditionally, the operating system was part of the trusted computing base. Trusted
execution environments aim to minimize the trusted computing base by restrict-
ing the capabilities of the operating system and even the system administrator.
Arm TrustZone [8, 18] has been deployed for more than a decade in billions
of mobile devices. TrustZone has an additional, fully isolated execution realm,
running a separate trusted operating system and trusted applications (called
trustlets). While architectural manipulation of TrustZone is only possible with
the exploitation of bugs inside the TrustZone [20], microarchitectural attacks
remain unmitigated [40, 51, 53, 71]. Intel introduced a trusted execution envi-
ronment, SGX [15, 28], which splits applications into an untrusted part and a
trusted part (called enclave). Architectural access is mitigated, and the memory
is encrypted against physical attacks. However, again bugs inside an SGX en-
clave [35, 65], or side channels [11, 57] can still lead to exploitation. Furthermore,
transient-execution attacks, e.g., Foreshadow [61] and ZombieLoad [55], as well
as power side channels [34, 41] can still leak precise information from enclaves.

The current generation of trusted execution environments follows a differ-
ent approach, focusing on virtual machines. AMD’s Secure Encrypted Virtu-
alization (SEV) [4, 32] has been available in commercial processors since 2020.
More recently, Intel also introduced their alternative, Trusted Domain Exten-
sion (TDX) [27]. The scientific community has studied the security of AMD SEV
thoroughly. Early works exploited unencrypted virtual machine states [23, 66],
control over nested page tables [23, 47, 48], and insufficient encryption [19, 67].

More recent works demonstrated that side channels on the ciphertext can de-
terministically leak data [37, 39] as well as the possibility of power side channel
attacks [64].

Side-channel attacks on trusted execution environments generally assume co-
location on the same physical host. Since in a personal computer setting this is
realistic, only few works studied the security implications of malicious work-
loads inside trusted execution environments [54, 56]. With confidential virtual
machines, this also has implications on the threat model: Cloud vendors typi-
cally dedicate entire servers to one type of workload [43], e.g., a host running
many AMD SEV virtual machines. Furthermore, resource provisioning systems
monitor workloads and dynamically move similar workloads to the same phys-
ical machine to optimize the utilization of hardware resources [43], i.e., again
many similar virtual machines are grouped onto the same server. Consequently,
to perform side-channel attacks on co-located confidential virtual machines, the
attacker needs to detect co-location and mount the attack from inside a confi-
dential virtual machine.

2.2 Co-location Detection Attacks

As Zhao et al. [75] point out, co-location detection is a pivotal step to side-
channel attacks in the cloud. Consequently, a long line of research studied tech-
niques to detect co-location in commercial clouds [9, 25, 26, 52, 58, 73, 74], for in-
stance by analyzing IP addresses, hard disk performance, network latency, and
cache covert channels on the L1 cache and the last-level cache. Inci et al. [25]
report that most of the aforementioned techniques have been addressed with
mitigations by public cloud providers. In particular, cloud providers are aware
of the concerns around SMT side channels and have in some instances mitigated
them in the past by disabling hyperthreading [60] or strictly schedule only work-
loads of the same virtual machine on two hyperthreads [3]. Inci et al. [25] also
show and argue that some side channels remain possible, e.g., Prime+Probe on
the last-level cache. However, as inclusive last-level caches do not scale with high
core counts, more recent processor designs often have non-inclusive L3 caches,
e.g., recent Intel server processors. Consequently, even if an attacker manages
to craft a Prime+Probe eviction set evict data from the L3 cache, repeatedly
iterating over Prime+Probe eviction sets may reach the L3 cache but will not
evict data from other co-located workload’s private L1 and L2 caches. AMD
processors also split the last-level cache into isolated parts per core complex.
Hence, while Flush+Reload via shared memory may still be possible within
one core complex, cache attacks across core complexes are currently infeasible.
Varadarajan et al. [63] showed that the effects of memory bus contention [69]
can influence the performance on shared cloud systems in a way that allows
for co-location detection. Zhao et al. [75] study the practicality of co-location
attacks in function-as-a-service clouds and demonstrate that an attacker can re-
liably co-locate with a victim workload. Being specific to function-as-a-service
clouds, their approach motivates further research into co-location techniques for
other types of contemporary cloud systems.

2.3 AMD SecureTSC

Several works proposed to detect ongoing attacks on trusted execution environ-
ments requiring a trusted timing source [13, 49]. Focusing on Intel SGX, these
works note that they have to rely on a timing thread as the rdtsc instruction is
not available in SGX. Similarly, rdtsc can also be manipulated by the hypervisor
in (confidential) virtual machines and, hence, even when available in a trusted
execution environment cannot inherently be considered a trusted timing source.
This situation changed with the novel SecureTSC feature introduced for AMD
SEV-SNP [5, 16] and the Intel Virtual TSC feature [29] respectively. SecureTSC
makes the rdtsc instruction a trusted and non-malleable timing source. A confi-
dential virtual machine can enable SecureTSC via a bit in the SEV FEATURES field
in the VM Save Area. When enabled, all accesses to the timestamp counter, e.g.,
using rdtsc or rdtscp, or by reading the TSC Model-Specific Register (MSR),
will be resolved directly by the hardware, without any way for the hypervisor
to manipulate the value.3 The SecureTSC timestamp counter is not affected by
the P-State 0 frequency or by writes to the TSC MSR, which we confirm in our
experiments.

Hypervisors can set the TSC frequency of virtual machines (guests). Even
with SEV-SNP, the hypervisor still has control over the guest’s TSC frequency,
via the DESIRED TSC FREQ field in the SNP LAUNCH START request, sent to the
AMD-SP while launching a guest. This value is stored in the Guest Context, a
structure containing information, keys, and metadata associated with the guest.
After being launched, the guest queries the AMD-SP with the TSC INFO re-
quest. The response to this request contains the Guest TSC Scale, Guest TSC
Offset, and TSC Factor. The Guest TSC Scale is calculated as the ratio of
DESIRED TSC FREQ to the mean native frequency.

The Guest TSC Offset is an offset added to the guest TSC value on every
read. According to official documentation [6], this value is decided by the AMD-
SP. In our experiments, we did not receive a Guest TSC Offset other than 0 and
we think that this is due to AMD-SP firmware not being ready. When a guest
invokes an instruction to get the TSC value, the hardware first scales the TSC
value with Guest TSC Scale and then adds the Guest TSC Offset.

As different cores and core complexes have different delays during boot time,
especially compared to the bootstrap processor, there is a slight variance on the
TSC values they observe. In all our measurements, we found no case with a
difference of more than 228 cycles, which corresponds to about 0.13 seconds at
a frequency of 2GHz.

3 This may involve the AMD Secure Processor (AMD-SP).

Fig. 1. Overview of our attack. The confidential virtual machines exchange the non-
malleable timing information with a remote coordination server that evaluates the data
and detects which of the virtual machines are co-located.

3 High-Level Idea

The high-level idea behind our attack is to exploit that servers in a data center
have unique uptimes. If precise-enough measurements of the real uptime within
the virtual machines are possible it is easy to detect co-located virtual machines
by a central coordinator. Servers, even within one rack, are typically not started
at precisely the same time but cascaded to avoid load spikes on the data cen-
ter’s power supply. Until now timing sources in virtual machines could easy be
randomized by the hypervisor as it can freely adjust the offset and frequency
of rdtsc, thwart an attack like this. Additionally, the hypervisor already con-
tinuously mangles with the TSC value to, for example, compensate for virtual
machine exists. It was already shown that timing sources in virtual machines
are too inaccurate for microarchitectural attacks [44].

Our attack exploits the novel SecureTSC feature, available for AMD SEV-
SNP confidential virtual machines that prevents the hypervisor from mangling
with the TSC value inside a virtual machine while it is running. Figure 1 illustrates
our attack with the example of two physical machines in the same data center.
The root cause enabling our attack is the availability of a non-malleable tim-
ing source, i.e., a non-malleable rdtsc instruction and that servers have unique
uptimes. Confidential virtual machines with SecureTSC enabled have access to
the scale, offset, and value of the timestamp counter at any time. With these
values, the confidential virtual machine, or an external system provided with
this data, can compute the precise CPU uptime in timestamp counter cycles.
Based on the precise CPU uptime, we then determine which virtual machines
are co-located on the same physical machine. In contrast to prior work, using one-
to-one channels to detect co-location, e.g., cache contention [25, 52, 73], memory
bus contention [63, 69], CPU frequency [31] our side channel on SecureTSC is

a one-to-many channel: Instead of requiring time-consuming attempts between
each two pairs of virtual machines to establish a channel for co-location detection,
a remote coordination server can compare all non-malleable timestamp counter
data at once and instantly determine the co-location status for all virtual ma-
chines involved. If only the co-location of any two virtual machines is required,
the birthday problem shows that only a small number of virtual machines must
be rented.

4 Design and Implementation of our Attack

In this section, we present the design and implementation of our attack. We show
how an attacker can use values of SecureTSC to determine whether two or more
SecureTSC-enabled AMD SEV-SNP virtual machines are co-located. We define
the threat model for our attack and present an attack protocol, TsCupid, that
we use to determine the co-location status of all connected virtual machines at
once, using a single remote coordination network server.

4.1 Threat Model

The attacker has the goal to determine which of its confidential virtual machines
are co-located on the same physical machine. With this knowledge, the attacker
aims to mount subsequent attacks that benefit from the co-location of two or
more confidential virtual machines, e.g., attacks on the cache directory which
require multiple cores to exhaust the over-provisioned directory [70]. We assume
the attacker has the resources to launch hundreds of confidential virtual ma-
chines, which are typically billed in short time frames (we evaluate the attack
cost in Section 5.5). We also assume that starting a large number of confidential
virtual machines eventually leads to co-location of some of them. Furthermore,
we assume that an attacker has a coordination server. The coordination server
can be one of the virtual machines within the same data center or an remote
machine somewhere else.

Owners of AMD SEV-SNP confidential virtual machines can decide whether
their machines are allowed to be live-migrated through the MIGRATE MA field in
the guest policy, a structure supplied by the guest owner that limits the actions
that the hypervisor can take [6]. For this threat model, we assume that the AMD
SEV-SNP confidential virtual machines disallow live migration. It must be noted
that live migration of these confidential virtual machines is not yet supported [2,
22, 36]. Hence, live migration is no concern for our attack currently, in contrast to
prior work, where the resource provisioning system (RPS) may have relocated
virtual machines for load balancing [43]. However, we believe that our attack
extends to the live-migration scenario as AMD SEV-SNP confidential virtual
machines that allow live migration will know that they have been migrated by
design [6].

0 20 40 60 80 100 120
0

2

4

6
·1011

Time (s)

T
S
C
V
a
lu
e
D
iff
er
en

ce
(T

ic
k
s)

Ryzen 7700X

Epyc 7313P

Epyc 7443

Ryzen 5000

Fig. 2. The difference in TSC values reveals that different AMD CPUs increment their
TSC at unrelated rates. For each machine, we plot the difference of a TSC read against
the first TSC read. This was done on four machines for 128 s where a TSC read was
performed every second.

4.2 Protocol for Co-location Detection

Basically, our co-location detection based on non-malleable timestamp counter
values works by all virtual machines sending their current timestamp counter
value to a central server. This central coordination server collects all timestamp
counter values and compares them with each other. If two timestamp counter
values from different virtual machines are identical, it means that the CPU they
are running on has the same uptime and is, therefore, very likely, the same CPU.
Hence, the virtual machines are deemed co-located.

4.3 Overview

However, this approach ignores multiple factors that negatively affect the co-
location detection:

1. network latency and jitter that is possibly different on the virtual machines;
2. the high frequency of the timestamp counter;
3. the frequency of the timestamp counter can vary on different CPUs (see Fig-

ure 2);
4. the hypervisor can also specify a timestamp counter frequency per virtual

machine (see Figure 3);
5. the timestamp counter offset field can be different per virtual machine.

The first point could be addressed by using an NTP-like transmission of the time
value. NTP measures the round-trip time between two machines and under the
assumption that both directions take approximately the same time, adds half of
the round-trip time to the received time value [46]. But this solution does not
address the other factors. Hence, we design a protocol, TsCupid, to take all five
factors into account.

0 7.5 15 22.5 30

1.8

3.6

5.4

·1012

Time (Minutes)

T
S
C

V
a
lu
e
(T

ic
k
s) 3GHz

2GHz

1GHz

Fig. 3. SEV-SNP virtual machines running with different SecureTSC frequencies de-
fined by the hypervisor. After virtual machine creation, the hypervisor can no longer
change the frequency of the SecureTSC. The legend shows the configured frequency in
GHz visible to the virtual machine.

At its core, TsCupid collects timestamp counter information, including the
value, offset and frequency on a remote coordination server. Based on this in-
formation, we can infer a normalized timestamp that is offset- and frequency-
corrected. Storing the normalized timestamp and the frequency, we can also
extrapolate the current normalized timestamp for any of the confidential virtual
machines without exchanging further messages. This allows the coordination
server to compare the normalized timestamp values across all confidential virtual
machines regardless of when they sent in the timestamp counter information.

The normalized timestamps are still affected by the high frequency of the
timestamp counter (i.e., multiple increments per nanosecond). Consequently,
the coordination server will practically never receive two identical timestamps.
Instead, TsCupid uses a threshold to determine which timestamps are to be
considered identical and the virtual machines co-located.

4.4 Implementation

The process of co-location detection with TsCupid uses specific messages:
First, the protocol starts with an initialization message (TSCINIT) sent by

the confidential virtual machine, which contains the timestamp counter fre-
quency and timestamp counter offset. This information is sufficient for the server
to establish a record for this confidential virtual machine and to extrapolate and
match further messages received.

Second, the confidential virtual machine sends a message (TSCVALUE) con-
taining the current timestamp counter value. When receiving the message, the
server stores its own local timestamp, as illustrated in Figure 4. The purpose for
this is to know precisely what local timestamp corresponds to the timestamp in
the confidential virtual machine. However, the timestamp counter value trans-
mitted by the confidential virtual machine cannot be used yet as the network
jitter and latency have not been accounted for.

Client Server

RDTSC: TSC1

Update: TSC2

TSC2−TSC1

2

TCP Send

TCP Ack

Fig. 4. TsCupid uses a NTP-style timestamp exchange. The round-trip time is taken
into account by taking two measurements on the confidential virtual machine and one
on the server. This way, the server can compute the precise timestamp counter value
on the confidential virtual machine at precisely the point where it received the first
message.

As the last step, the confidential virtual machine keeps track of when the
TCP acknowledgement for the TSCVALUE message arrives. Immediately after this
acknowledgement, the confidential virtual machine sends a message (TSCROUND-
TRIP) with the current timestamp counter value to the coordination server. This
allows the coordination server to compute the time between the two timestamps
from the confidential virtual machine and, thus, infer the round-trip time for
the messages. Based on the round-trip time, the attacker can infer the precise
point in time between the two timestamps, which is exactly when it stored its
own local timestamp, as illustrated in Figure 4.

TsCupid has two further messages to coordinate the confidential virtual ma-
chines. First, a message (TSCMATCH) to inform co-located machines of their co-
location. The server can send this message at any point in time but typically
will do so after receiving a TSCROUNDTRIP message which resulted in a match-
ing normalized timestamp in its local database. The TSCMATCH message contains
the number of co-located confidential virtual machines and further information
that may be relevant to the co-located confidential virtual machines. Second,
a message TSCWAIT, which instructs confidential virtual machines to idle for a
specified amount of time before providing a new timestamp counter value, e.g.,
to allow for reduction of noise with multiple measurements.

The coordination server can now compare the normalized timestamps of two
confidential virtual machines as follows: Confidential virtual machine A is run-
ning at timestamp counter frequency fA, with the timestamp counter offset oA,
and values t1,A and t2,A transmitted by TSCVALUE and TSCROUNDTRIP. The coor-
dination server C took the timestamp tA,C when the TSCVALUE message arrived,
and has its own timestamp counter frequency the current timestamp counter
value available as fC and tC . Another confidential virtual machine B is running

at timestamp counter frequency fB , with oB the timestamp counter offset, and
values t1,B and t2,B transmitted by TSCVALUE and TSCROUNDTRIP. The normal-
ized timestamp n(A) for a confidential virtual machine A is computed as

n(A) =

(
t1,A + t2,A

2
− oA

)
+

fA
fC

· (tC − tA,C) .

The coordination server can now compute whether A and B are co-located as

|n(A)− n(B)| < ε,

where ε is the detection threshold.
TsCupid stores all data to compute n(x) for all confidential virtual machines

in a database. Consequently, the coordination server can simply sort the data by
n(x) and compare the neighboring entries for being below the detection thresh-
old ε. If the detection threshold ε is too small, the false negative rate increases,
TsCupid does not correctly detect two co-located virtual machines. If ε is too
large, the false positive rate increases, TsCupid erroneously labels virtual ma-
chines co-located.

5 Evaluation

In this section, we evaluate the effectiveness of our implementation of the TsCu-
pid protocol on physical, local AMD SEV-SNP hardware. We show that we can
effectively identify co-located SEV-SNP guest virtual machines (clients) by using
our protocol. In Section 5.1, we describe our experimental hardware and software
setup to study TsCupid. In Section 5.2 we evaluate the impact of network stress
on our network’s round trip time to aid our further noise evaluation. We run
the experiments and discuss the results in Section 5.3. In Section 5.4, we look at
sources of noise and challenges of TsCupid. Finally in Section 5.5, we calculate
financial costs of deploying TsCupid in order to search for co-located machines.

5.1 Experimental Setup

Although SEV-SNP machines can be created on Google Cloud and Amazon’s
AWS, they are still in preview and do not support SecureTSC from the hyper-
visor side. Therefore, we evaluate TsCupid in our local network with a single
machine, an AMD Epyc 7313P. The network has a link speed of 1Gbit/s as we
assume that this as a lower bound for real cloud environments. We launch 16
co-located clients with a TSC frequency of 2GHz on our AMD Epyc 7313P. The
central coordination server runs on another machine in the same network.

It is enough to evaluate our co-location detection with only a single AMD
machine with only co-located virtual machines. Without SecureTSC support on
any large cloud provider we can only estimate the probable differences in uptimes
between different machines in a server farm. Therefore, we use a single machine
to measure the minimum threshold ϵ required to correctly detect co-located

0.0 0.5 1.0 1.5 2.0 2.5

10.1

8.1

6.7
6.1

4.0

2.0

·1012

Time (s)

T
S
C

V
a
lu
e
(T

ic
k
s) Hypervisor TSC

SEV-SNP TSC

Fig. 5. Changing the TSC MSR on the hypervisor has no effect on the SecureTSC value
returned by a read to the guest TSC MSR. Over a period of 2.5 s, the hypervisor’s TSC
MSR was decreased in intervals of fifths from 10.1× 1012 ticks to 2.0× 1012 ticks. The
guest’s TSC MSR stayed unaffected at a value of 6.7× 1012 ticks.

machines. This corresponds to a co-location rate of 100% as all our machines
are co-located. With this information we can show that our found threshold
ϵ of 0.13ms is lower then the probable difference in machine uptimes. To test
the correct functionality of our implementation of the client and server code and
rule out any software bugs, we additionally tested our protocol on non-co-located
clients and TSCupid correctly identified them as non-co-located.

Messages from the hypervisor take an average of 0.15ms to reach the server,
whereas messages from the clients take an average of 0.45ms. We test 17 thresh-
olds ε ranging from 8 µs to 0.5 s . For each threshold ε, we run 100 experiments
each with and without network stress, totaling 3400 experiments.

We install AMD’s kernel patches for the guest [16] and the hypervisor [17],
to add SecureTSC functionality. Although the guest patches redirect attempts
to read the TSC MSR directly with rdmsr by executing rdtsc, we found that
directly reading the TSC MSR within a guest resulted in the same value returned
by executing rdtsc. We do not know why AMD chose to implement their guest
patches like this. Moreover, the guest TSC MSR is not affected by writes to
the hypervisor TSC MSR as is shown in Figure 5 resolving the concerns by
Alder et al. [1].

5.2 Impact of Network Stress on Round Trip Time

We run our experiments in two network settings, with and without a network
stress program that applies pressure on the network by checking internet down-
load speed from fast.com. The network stress program runs natively on the
system we attack. The bandwidth to the internet from our local network is high
enough to cause significant stress also within the 1Gbit/s local network. The
packet round trip times to Cloudflare’s 1.1.1.1 public DNS resolving server are
shown in Figure 6. Without network stress, it took an average of 4.14ms with

0 10 20 30 40 50 60 70 80 90 100
100

102

104

Round Trip Time (ms)

N
u
m
b
er

o
f
C
a
se
s Without Network Stress

With Network Stress

Fig. 6. Network stress has a discernible effect on packet round trip times. For 2000
packets, it took an average of 4.14ms without network stress to make a round trip
to Cloudflare’s 1.1.1.1 public DNS resolving server from the system we attack. With
network stress, it took an average of 66.46ms to perform the same round trip.

a standard deviation of 0.31ms. With network stress, packet round trip times
took an average of 66.46ms and a standard deviation of 10.0ms.

5.3 Evaluation of TsCupid

We base TsCupid’s success, i.e., accuracy based on the percentage of clients
where we correctly detected co-located for each threshold. We give TsCupid a
maximum of 5 s before aborting the experiment. We provide a secondary metric
for the time it takes to determine the maximum number of co-locations in each
attempt. Figure 7 shows the percentage of co-locations detected and the time
taken to detect them against the 17 thresholds. We determine that network
stress has negligible consequences on the number of co-locations detected and
some to little effect on the time taken to detect them. We believe that this is due
to TsCupid being a minimal protocol with every message (except for TSCMATCH)
contained in one TCP segment. The TSCMATCH message is sent after co-location
was detected so network stress has no negative impact on it.

The results of all thresholds are shown in Figure 7. With a threshold ϵ of
0.13 seconds, we achieve 100% (n=100, σx̄=0) detection rate without network
stress and 100% (n=100, σx̄=0) detection rate with network stress. This is far
lower than typical power-up delays for servers in a data center [14, 24], making
our co-location detection very robust.

For low thresholds, the detection time is considerable higher with network
stress than without. This can be explained by the high jitter of network packages
under high network load as shown in Figure 6. While we tested the ping round-
trip time to the internet in those experiments, the jitter seems to be lower inside
the network, as the time to detect is already close to 0 with a threshold of 4.2ms
an higher.

Under the assumption that a single AWS data center has 100 000 individual
servers [45] and 10% of them use AMD CPUs that use AMD SEV-SNP with

8 µs 33 µs 0.13ms 0.5ms 2.1ms 8ms 33ms 0.13 s 0.5 s

12.5

25

37.5

50

62.5

75

87.5

100

Threshold ϵ

P
er
ce
n
ta
g
e
D
et
ec
ti
o
n
(%

)

0

0.2

0.4

0.6

0.8

1

T
im

e
to

D
et
ec
t
(s
)

Time To Detect Percentage Detections

With Network Stress Without Network Stress

Fig. 7. The success rate of TsCupid with different TSC thresholds. A lower value allows
for higher divergence of the TSC values. The detection percentage shows the percentage
of all co-located virtual machines that were actually detected after a maximum of 5 s.
The time to detect plots the time after which no new co-located virtual machines were
detected. Network stress has only a small impact on the time to detect and negligible
impact on the detection percentage.

SecureTSC, there are 10 000 target servers. For TSCupid to work two machines
must not have an uptime more similar than the chosen threshold ϵ. Further as-
suming that these server are randomly started over the span of a year, we can
calculate the average number of pairs below the threshold the following way:

λ =
Machines− 1

Interval length
=

9999

3600 s · 24 · 356
= 3.25× 10−4 s−1

P (Gap < ϵ) = 1− e−λ·ϵ = 1− e−6.5×10−4·0.13 = 4.23× 10−5

False positives = P (Gap < ϵ) ·# Machines = 0.42

On average there is less than one false positive, another machine that has been
booted within 0.13ms of another machine.

With a higher number of 50 000 target machines, started over the span of
a year, there are on average 10.6 false positive machines. However, this is not
a problem for an attacker. Following the use of TSCupid, potential co-located
machines can use other methods [63, 25] to verify co-location. These one-to-one
channels become viable for co-location detection after reducing the number of
potentially co-located machines from, e.g., 50 000 to 10.

5.4 Sources of Noise & Challenges

One of the main assumptions of TsCupid is that the network latency between
the clients and the server is symmetric, which is normally the case in local
networks and within data centers. Based on this assumption we can compute
the TSC of the client at the time the receiver received the message, as shown in
Figure 4. Apart from an asymmetric network architecture, a potential challenge
for an attacker is the hypervisor withholding network packets being sent out or
received. A benign hypervisor may even inadvertently do this, as we observed
that there were vastly different times between consecutive ping round trip times
ranging from 0.1ms to 4ms. This is not surprising, as SEV-SNP machines are
known to be subject to higher network latency [21]. We address this latency noise
problem by running the protocol multiple times, if necessary, until the result is
clear, i.e., detection of co-location or non-co-location.

5.5 Financial Costs of TsCupid

On Google Cloud, the cheapest way to rent an AMD SEV-SNP machine is to
rent an N2D series machine with two vCPUs and 1GB of RAM running for four
hours, with a cost of $0.75. On Amazon’s AWS, renting a Linux, M6A.Large
instance running for one hour is the cheapest way to rent a machine capable of
AMD SEV-SNP, with a cost of $0.105. As discussed in Section 5.3, a TsCupid
server takes significantly less than an hour to determine if clients are co-located.
Therefore, an attacker would need to spawn an instance, run the client code,
and delete the instance within an hour.

If an attacker wants to co-locate any two virtual machines in a data center,
they need to know the number of servers in a data center. Under the, for the
attacker pessimistic, assumption that a single AWS data center has 100 000 indi-
vidual servers [45] and half of them use AMD CPUs and support AMD SEV-SNP
with SecureTSC, there are 50 000 target servers. Applying the birthday prob-
lem, the attacker needs to rent only 264 virtual machines so that any two are
co-located with a probability of 50%. To co-locate two virtual machines with
90% probability, 480 virtual machines are required. On AWS, this would cost
$27.72 and $50.40 respectively to spin up, whereas it would cost $198.00 and
$360.00 on Google Cloud.

The probability of co-location further increases when taking into account
that new virtual machines are probably not distributed evenly over all servers as
some servers may already be completely occupied. This is significantly lower than
prior co-location attacks that worked through one-to-one checks, e.g., contention
covert channels.

6 Potential Mitigations

The TSC frequency, TSC offset, and rdtsc value are the three pieces a guest
VM needs to calculate the CPU’s up-time — the determiner of co-location. The

simplest way to prevent guests from computing the CPU up-time is to hide
the Guest TSC Offset. Since letting the hypervisor control the Guest TSC offset
could result in the hypervisor being able to tamper with the guest’s rdtsc value,
the only remaining possibility would be for the AMD-SP to control it. Therefore,
we propose that AMD hide the GUEST TSC OFFSET field entirely.

It is also possible to fingerprint CPUs based on their TSC frequency alone [75].
This is relevant in SEV-SNP guest VMs as the GUEST TSC SCALE is a ratio of
the hypervisor-set DESIRED TSC FREQUENCY and the mean native frequency, i.e.,
the native frequency of the TSC on the CPU. Since both GUEST TSC SCALE and
DESIRED TSC FREQUENCY are available to the guest within its guest context, it is
trivial for malicious guest to calculate the mean native frequency and use it to
fingerprint based on methods suggested by Zhao et al. [75]. Therefore, we pro-
pose that AMD hide either one of DESIRED TSC FREQUENCY or GUEST TSC SCALE.
Moreover, we suggest that hypervisors use a randomly generated DESIRED TSC -

FREQUENCY for each guest that is launched.
One challenge to hiding GUEST TSC OFFSET and DESIRED TSC FREQUENCY is

its impact on live migration. Before and after migrating, SEV-SNP guest VMs
that use the SecureTSC feature are required to update their TSC offset by
normalizing the current TSC value (incremented with GUEST TSC FREQUENCY)
to DESIRED TSC FREQUENCY and adding this value to the current TSC value.
This way, a guest doesn’t experience a discontinuity in its rdtsc value before
and after migrating.

Since this is the responsibility of the guest, hiding the GUEST TSC OFFSET

and DESIRED TSC FREQUENCY would prevent this operation. Our proposal is to
have the AMD-SP update the TSC offset before migration and have the guest
store the updated value either in its VMSA or guest context. After migrat-
ing, the guest can send its offset to the AMD-SP which updates it in a similar
fashion to the formula above. We believe that this mitigation isn’t technically
hard to implement as SEV-SNP introduces the Reverse Map Table, a hardware-
supported feature where pages can be owned by the hypervisor, guests, or the
AMD-SP. We propose moving the GUEST TSC OFFSET, GUEST TSC SCALE, and
DESIRED TSC FREQUENCY to a page owned by the AMD-SP. However, this miti-
gation is only possible if AMD decides to implement it, as guests of the targeted
guest threat model cannot defend themselves otherwise.

7 Conclusion

In this paper, we presented the first co-location detection technique on confiden-
tial virtual machine hosts. We showed that the new AMD SecureTSC feature,
providing a trusted timing source to confidential virtual machines, can be uti-
lized by an attacker to detect whether two confidential virtual machines are
co-located, based on their trusted and non-malleable timestamp counter values.
Our minimal network protocol, TsCupid, runs fully parallelized and allows to
detect co-located machines across hundreds of confidential machines at once. It
is the first one-to-many channel for co-location detection that is able to find co-

located virtual machines within 0.13 seconds while requiring only a comparably
small number of virtual machines due to the birthday problem. In a data center
with 50 000 AMD SEV-SNP machines an attacker only needs to spawn 480 vir-
tual machines to get two co-located virtual machines with 90% probability. We
propose several concrete changes to the SecureTSC feature that would mitigate
our attack.

Acknowledgments

We thank our anonymous reviewers for their valuable feedback on this work. We
furthermore thank Stefan Gast, Andreas Kogler for valuable feedback and Martin
Glasner for the BIOS random boot up delay talks. This research is supported in
part by the European Research Council (ERC project FSSec 101076409), and the
Austrian Science Fund (FWF SFB project SPyCoDe 10.55776/F85). Additional
funding was provided by generous gifts from Red Hat and Google. Any opinions,
findings, and conclusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the funding parties.

References

1. Alder, F., Scopelliti, G., Van Bulck, J., Mühlberg, J.T.: About time: On the chal-
lenges of temporal guarantees in untrusted environments. In: SysTEX (2023)

2. Amazon AWS: AMD SEV-SNP Considerations (2024), https://docs.aws.

amazon.com/AWSEC2/latest/UserGuide/sev-snp.html

3. Amazon AWS: The EC2 approach to preventing side-channels (2024),
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-

aws-nitro-system/the-ec2-approach-to-preventing-side-channels.html

4. AMD: AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection
and More (2020), https://www.amd.com/content/dam/amd/en/documents/epyc-
business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-

integrity-protection-and-more.pdf

5. AMD: AMD64 Architecture Programmer’s Manual (2023)

6. AMD: SEV Secure Nested Paging Firmware ABI Specification (9 2023)

7. Anwar, F.M., Garcia, L., Han, X., Srivastava, M.: Securing time in untrusted op-
erating systems with timeseal. In: RTSS (2019)

8. ARM: Security technology building a secure system using trustzone technol-
ogy (2009), https://developer.arm.com/documentation/PRD29-GENC-009492/

c/TrustZone-Hardware-Architecture

9. Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., Butler, K.: On detecting
co-resident cloud instances using network flow watermarking techniques. Interna-
tional Journal of Information Security 13, 171–189 (2014)

10. Betz, J., Westhoff, D., Müller, G.: Survey on covert channels in virtual machines
and cloud computing. Transactions on Emerging Telecommunications Technologies
(2016)

11. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software Grand Exposure: SGX Cache Attacks Are Practical. In: WOOT (2017)

12. Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H.: SgxPectre Attacks:
Stealing Intel Secrets from SGX Enclaves via Speculative Execution. In: EuroS&P
(2019)

13. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting Privileged Side-Channel
Attacks in Shielded Execution with DéJà Vu. In: AsiaCCS (2017)

14. Cisco Systems Inc.: Cisco UCS C-Series Servers Integrated Management
Controller GUI Configuration Guide for C22 M3, C24 M3, C220 M3
and C240 M3 Servers, Release 3.0 (2024), https://www.cisco.com/

c/en/us/td/docs/unified_computing/ucs/c/sw/gui/config/guide/3_0/

b_Cisco_UCS_C-series_GUI_Configuration_Guide_301/b_Cisco_UCS_C-

series_GUI_Configuration_Guide_201_chapter_011.html#d71727e3886a1635
15. Costan, V., Devadas, S.: Intel SGX Explained. Cryptology ePrint Archive, Report

2016/086 (2016)
16. Dadhania, N.A.: [PATCH v7 00/16] Add Secure TSC support for SNP

guests (2023), https://lore.kernel.org/all/20231220151358.2147066-1-

nikunj@amd.com/
17. Dadhania, N.A.: SecureTSC Hypervisor Patches (2023), https://github.com/

nikunjad/linux/tree/snp-host-latest-securetsc_v5
18. Dai, W., Jin, H., Zou, D., Xu, S., Zheng, W., Shi, L.: TEE: A Virtual DRTM Based

Execution Environment for Secure Cloud-End Computing. In: CCS (2010)
19. Du, Z.H., Ying, Z., Ma, Z., Mai, Y., Wang, P., Liu, J., Fang, J.: Secure encrypted

virtualization is unsecure. arXiv:1712.05090 (2017)
20. Ge, X., Vijayakumar, H., Jaeger, T.: Sprobes: Enforcing kernel code integrity on

the trustzone architecture. In: Workshop on Mobile Security Technologies (MoST)
(2014)

21. Google: Confidential Computing concepts (2024), https://cloud.google.com/

confidential-computing/confidential-vm/docs/confidential-vm-overview
22. Google: Confidential Computing: Supported configurations (2024),

https://cloud.google.com/confidential-computing/confidential-

vm/docs/supported-configurations
23. Hetzelt, F., Buhren, R.: Security analysis of encrypted virtual machines. ACM

SIGPLAN Notices 52(7), 129–142 (2017)
24. HP: Setting the power-on delay (2024), https://support.hpe.com/hpesc/

public/docDisplay?docId=sd00001068en_us&page=GUID-D7147C7F-2016-0901-

0A72-000000000D92.html
25. Inci, M.S., Gulmezoglu, B., Eisenbarth, T., Sunar, B.: Co-location detection on

the cloud. In: COSADE (2016)
26. Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Seriously, get

off my cloud! Cross-VM RSA Key Recovery in a Public Cloud. Cryptology ePrint
Archive, Report 2015/898 (2015)

27. Intel: Intel Trust Domain Extensions (2023), https://www.intel.com/content/
www/us/en/developer/tools/trust-domain-extensions/documentation.html

28. Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3
(3A, 3B & 3C): System Programming Guide (2024)

29. Intel: Intel Trust Domain Extensions Module Base Architecture Specifi-
cation (2024), https://www.intel.com/content/www/us/en/developer/tools/

trust-domain-extensions/documentation.html
30. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Cross-VM Side Channels and

Their Use to Extract Private Keys. In: Big Data and Cloud Computing (2014)
31. Kalmbach, M., Gottschlag, M., Schmidt, T., Bellosa, F.: TurboCC: A Practical

Frequency-Based Covert Channel With Intel Turbo Boost. arXiv:2007.07046 (2020)

32. Kaplan, D., Powell, J., Woller, T.: AMD Memory Encryption (2016)
33. Kim, T., Peinado, M., Mainar-Ruiz, G.: StealthMem: system-level protection

against cache-based side channel attacks in the cloud. In: USENIX Security (2012)
34. Kogler, A., Juffinger, J., Giner, L., Gerlach, L., Schwarzl, M., Schwarz, M., Gruss,

D., Mangard, S.: Collide+Power: Leaking Inaccessible Data with Software-based
Power Side Channels. In: USENIX Security (2023)

35. Lee, J., Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C., Kim, T., Peinado, M.,
Kang, B.B.: Hacking in Darkness: Return-oriented Programming against Secure
Enclaves. In: USENIX Security (2017)

36. Lendacky, T.: QEMU not working with virt-install (2022), https://github.com/
AMDESE/qemu/issues/3#issuecomment-1171302037

37. Li, M., Wilke, L., Wichelmann, J., Eisenbarth, T., Teodorescu, R., Zhang, Y.: A
systematic look at ciphertext side channels on AMD SEV-SNP. In: S&P (2022)

38. Li, M., Zhang, Y., Lin, Z., Solihin, Y.: Exploiting unprotected {I/O} operations
in {AMD’s} secure encrypted virtualization. In: USENIX Security (2019)

39. Li, M., Zhang, Y., Wang, H., Li, K., Cheng, Y.: CIPHERLEAKS: Breaking
Constant-time Cryptography on AMD SEV via the Ciphertext Side Channel. In:
USENIX Security (2021)

40. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: Cache
Attacks on Mobile Devices. In: USENIX Security (2016)

41. Lipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon, C., Canella, C., Gruss, D.:
PLATYPUS: Software-based Power Side-Channel Attacks on x86. In: S&P (2021)

42. Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., Lee, R.B.: Cata-
lyst: Defeating last-level cache side channel attacks in cloud computing. In: HPCA
(2016)

43. Makrani, H.M., Sayadi, H., Nazari, N., Khasawneh, K.N., Sasan, A., Rafatirad, S.,
Homayoun, H.: Cloak & Co-locate: Adversarial Railroading of Resource Sharing-
based Attacks on the Cloud. In: Secure and Private Execution Environment Design
(SEED) (2021)

44. Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Alberto Boano, C.,
Mangard, S., Römer, K.: Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS (2017)

45. Miller, R.: Inside Amazon’s Cloud Computing Infrastructure (2015),
https://www.datacenterfrontier.com/design/article/11431484/inside-

amazon8217s-cloud-computing-infrastructure

46. Mills, D., et al.: Network Time Protocol. Tech. rep., RFC-958, M/A-COM Linkabit
(1985)

47. Morbitzer, M., Huber, M., Horsch, J., Wessel, S.: Severed: Subverting AMD’s vir-
tual machine encryption. In: EuroSec (2018)

48. Morbitzer, M., Proskurin, S., Radev, M., Dorfhuber, M.: SEVerity: Code Injection
Attacks against Encrypted Virtual Machines. In: WOOT (2021)

49. Oleksenko, O., Trach, B., Krahn, R., Silberstein, M., Fetzer, C.: Varys: Protecting
SGX Enclaves from Practical Side-Channel Attacks. In: USENIX ATC (2018)

50. Pfarr, F., Buckel, T., Winkelmann, A.: Cloud computing data protection – a lit-
erature review and analysis. In: HICSS (2014)

51. Qiu, P., Wang, D., Lyu, Y., Qu, G.: VoltJockey: Breaching TrustZone by Software-
Controlled Voltage Manipulation over Multi-core Frequencies. In: CCS (2019)

52. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My
Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In: CCS
(2009)

53. Ryan, K.: Hardware-Backed Heist: Extracting ECDSA Keys from Qualcomm’s
TrustZone. In: CCS (2019)

54. Schwarz, M., Gruss, D., Weiser, S., Maurice, C., Mangard, S.: Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In: DIMVA (2017)

55. Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina, J., Prescher, T.,
Gruss, D.: ZombieLoad: Cross-Privilege-Boundary Data Sampling. In: CCS (2019)

56. Schwarz, M., Weiser, S., Gruss, D.: Practical Enclave Malware with Intel SGX. In:
DIMVA (2019)

57. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In: DIMVA (2017)

58. Shringarputale, S., McDaniel, P., Butler, K., La Porta, T.: Co-residency attacks
on containers are real. In: CCSW (2020)

59. Sule, M.J., Li, M., Taylor, G.: Trust modeling in cloud computing. In: SOSE (2016)
60. Sullivan, D., Arias, O., Meade, T., Jin, Y.: Microarchitectural Minefields: 4K-

aliasing Covert Channel and Multi-tenant Detection in IaaS Clouds. In: NDSS
(2018)

61. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silber-
stein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution. In: USENIX
Security (2018)

62. Van Bulck, J., Moghimi, D., Schwarz, M., Lipp, M., Minkin, M., Genkin, D., Yuval,
Y., Sunar, B., Gruss, D., Piessens, F.: LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection. In: S&P (2020)

63. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A Placement Vulnerability
Study in Multi-Tenant Public Clouds. In: USENIX Security (2015)

64. Wang, W., Li, M., Zhang, Y., Lin, Z.: PwrLeak: Exploiting Power Reporting In-
terface for Side-Channel Attacks on AMD SEV. In: DIMVA (2023)

65. Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.: AsyncShock: Exploiting
Synchronisation Bugs in Intel SGX Enclaves. In: ESORICS (2016)

66. Werner, J., Mason, J., Antonakakis, M., Polychronakis, M., Monrose, F.: The sever-
est of them all: Inference attacks against secure virtual enclaves. In: AsiaCCS
(2019)

67. Wilke, L., Wichelmann, J., Morbitzer, M., Eisenbarth, T.: SEVurity: No Secu-
rity Without Integrity–Breaking Integrity-Free Memory Encryption with Minimal
Assumptions. In: S&P (2020)

68. Wu, Z., Xu, Z., Wang, H.: Whispers in the Hyper-space: High-speed Covert Chan-
nel Attacks in the Cloud. In: USENIX Security (2012)

69. Wu, Z., Xu, Z., Wang, H.: Whispers in the Hyper-space: High-bandwidth and Re-
liable Covert Channel Attacks inside the Cloud. ACM Transactions on Networking
(2014)

70. Yan, M., Sprabery, R., Gopireddy, B., Fletcher, C., Campbell, R., Torrellas, J.:
Attack directories, not caches: Side channel attacks in a non-inclusive world. In:
S&P (2019)

71. Zhang, N., Sun, K., Shands, D., Lou, W., Hou, Y.T.: TruSpy: Cache Side-Channel
Information Leakage from the Secure World on ARM Devices. IACR Cryptology
ePrint Archive, Report 2016/980 (2016)

72. Zhang, T., Zhang, Y., Lee, R.B.: CloudRadar: A Real-Time Side-Channel Attack
Detection System in Clouds. In: RAID (2016)

73. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: HomeAlone: Co-residency Detection
in the Cloud via Side-Channel Analysis. In: S&P (2011)

74. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-Tenant Side-Channel
Attacks in PaaS Clouds. In: CCS (2014)

75. Zhao, Z.N., Morrison, A., Fletcher, C.W., Torrellas, J.: Everywhere All at Once:
Co-Location Attacks on Public Cloud FaaS. In: ASPLOS (2024)

