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Abstract. Rowhammer has been shown to be an extensive attack vec-
tor. In the years since its discovery, numerous exploits have been shown,
attacking a wide range of targets from kernels, through web browsers to
machine learning models. These attacks were not always mounted from
code running on the CPU of a system. Various devices peripheral to
the CPU, like GPUs or networks cards can cause Rowhammer bit flips
through DMA accesses to the main memory.
In this work, we take a look at solid state drives (SSDs) and if they can
be exploited as confused deputies to perform Rowhammer attacks. With
the introduction of NVMe, a standardized protocol that allows SSDs
to communicate directly over PCIe with the CPU, SSDs have reached
performance numbers of a million input/output operations per second.
PCIe also enables SSDs to use DMA for direct accesses to the main
memory. This lead to the introduction of the host memory buffer (HMB)
feature, that allows SSDs to use a small fraction of the host DRAM. We
are the first that reverse engineer how different SSDs utilize this host
memory buffer and answer the question if the accesses from the SSD to
the HMB are a potential attack vector to cause Rowhammer bit flips.
Our analysis of three SSDs shows, that bit flips in the HMB cause the
SSDs to lock up, which results in a denial of service or, even worse, data
loss. We also show how we can cause frequent accesses from the SSD
to the HMB on all three SSDs. On one SSD, we reach 5 000 DRAM
accesses per refresh interval. We measure the Rowhammer impact of
these accesses and show that they are effectively hammering the DRAM.
However, 5 000 DRAM accesses are not enough to cause Rowhammer bit
flips, even on modern, highly vulnerable DRAM.

1 Introduction

Since its discovery in 2014 [19], Rowhammer became a large research field, with
new and more sophisticated exploits being published every year, escalating priv-
ileges [32], hammering from ARM, AMD x86 or RISC-V [12, 26, 35], modifying
binaries [8], evading ECC [4], reading secrets [22], attacking the newest gen-
eration of mitigations [7, 11], using TRR as a confused deputy [20], finding a
new RowPress attack [25] or hammering many banks simultaneously [14]. Re-
searchers and the industry also published and implemented many Rowhammer
mitigations [2, 3, 7, 13, 21, 30, 36]. Most attacks hammer the DRAM from code
running on the CPU, either from native code or also from interpreted (and JIT
compiled) languages like, for example, JavaScript in the web browser.



A few works have shown that Rowhammer attacks are also possible from de-
vices attached to the CPU that can access the DRAM. Frigo et al. [6] hammered
on ARM, utilizing the integrated GPU to load texture data from the DRAM
to perform the hammer memory accesses. The big advantage of using the GPU
instead of the CPU, were smaller, more easily evictable caches. Tatar et al. [34]
attacked systems exploiting Remote Direct Memory Access (RDMA). RDMA al-
lows DMA accesses over the network without involvement of the CPU with sup-
ported network cards. With networks speeds above 10Gbit/s, up to 40Gbit/s,
the RDMA accesses were frequent enough to induce bit flips.

Solid state drives (SSDs) are the de facto standard storage medium in ev-
ery new computer, in particular in mobile ones, like laptops. Highly increased
speeds, especially on random accesses, lower power consumption and better phys-
ical durability make them superior to HDDs in pretty much every use case where
storage space to price is not the number one priority [33]. With the NVMe stan-
dard, SSDs are now directly connected to the CPU over PCIe and are reaching
over 1 000 000 IOPS with PCIe 4.0. Because of how flash memory storage works
internally, logical addresses must be translated to physical addresses for each ac-
cesses. The data structure storing these translations, the flash translation layer
(FTL), must therefore be quickly accessible for high performance. “Pro”-grade
SSDs typically come with a DRAM chip directly next to the SSD controller
to store the FTL to maximize performance. However, this is expensive. SSDs
supporting the host memory buffer (HMB) feature, can use a part of the main
memory to cache FTL translations [28]. For this, the SSD controller request
memory from the operating system that it then uses exclusively through direct
memory accesses (DMA). This saves cost and achieves acceptable performance.

Zhang et al. [37] identified the FTL, stored in the DRAM, as a potential
target for Rowhammer attacks. A bit flip in the correct location of the FTL
can remap a page on the SSD, similar to how Seaborn et al. [32] remapped a
memory page by flipping a bit in a virtual memory page table. This remapping
could give an attacker access to an indirect mapping block of the file system that
is inaccessible to unprivileged users. By editing this mapping block, the attacker
gains read and write access to the whole file system. They use an emulated SSD
from the Linux Foundation’s (prior Intel’s) Storage Performance Development
Kit (SPDK) [24] for their evaluation of this attack.

In this work, we are the first to analyze actual SSDs and their vulnerability to
Rowhammer bit flips as well as their potential as confused-deputy attack vectors.
By mapping the memory reserved for the HMB and utilizing the IOMMU, we
can precisely learn how different SSDs use the HMB during operation. We inject
artificial bit flips into the cached FTL mappings in the HMB and observe that
the SSD integrity checks the HMB. While this prevents remapping blocks with
bit flips, we find that after injecting bit flips, the SSD stops responding to any
commands until a complete power cycle is performed. During our experiments
we even manage to break one SSD by changing HMB contents while discarding
blocks. This would make HMB bit flips an effective denial of service attack.



For a real end-to-end exploit the bit flips must be caused by Rowhammer
accesses from the SSD to the HMB. We show, how our understanding of the
HMB helps us to achieve frequent HMB accesses by accessing the SSD. The least
recently used (LRU) HMB cache replacement policy of the Samsung 990 EVO
and Lexar NM790 allows to target specific pages for double sided Rowhammer.
However on-chip cache eviction makes these accesses slow, only 700 per refresh
interval. The Samsung 980 does not use LRU but a more rigid cache mapping.
By accessing a pair of addresses spaced with a specific interval, the Samsung
980 seems to always access the HMB with every read from the SSD. With these
address pairs, we achieve up to 5 000 accesses to the DRAM per refresh interval.

As this could be enough to see an impact on bit flip numbers, we evaluate
the Rowhammer impact of these HMB accesses from the SSD, with a combined
Rowhammer experiment. We prime the DRAM with conventional Rowhammer
accesses from software to achieve a minimum number of activations and then
fill the rest of the refresh interval with HMB accesses from the SSD. In this
experiment we do see a measurable impact from the SSD’s accesses, equivalent
to the Rowhammer accesses from software. However, with only 78 000 IOPS, the
number of SSD accesses is not high enough to induce bit flip on their own.

Even with out attack not working, this work is the first one that looks into
the HMB’s role in Rowhammer attacks, both as a victim to bit flips and an
actively hammering part. We show that bit flips in the HMB can have devastating
outcomes, from lost data to broken SSDs. However, the risk of this currently
happening is very low. Because SSDs manage their HMB in blocks of at least 4 kB
and contain an additional on-chip translation cache, the overhead is too large
to achieve memory accesses that are frequent enough to cause Rowhammer bit
flips. However, a privileged attacker, could corrupt the HMB through the direct
physical map to try to break hardware.

Contributions. In summary, we make the following contributions:

– We perform the first in-depth analysis of the host memory buffer of SSDs,
show how it is used and what effects bit flips have on it.

– We exploit the HMB cache replacement policies to cause double-sided Row-
hammer accesses and find special SSD access patterns that trigger a maxi-
mum amount of HMB accesses.

– We perform a combined Rowhammer experiment with software and SSD
accesses, showing that the SSD accesses have measurable impact.

– Finally, we make a compelling argument, why the HMB is currently no Row-
hammer security risk.

Outline. In Section 2, we provide background information on SSDs and the host
memory buffer (HMB) feature. In Section 3, we give an overview of the attack
and threat model. In Section 4, we reverse engineer how SSDs use the HMB and
what happens if we inject artificial bit flips. In Section 5, we show how we can
cause Rowhammer accesses from the SSDs but that these accesses are not fast
enough to cause Rowhammer bit flips. We shortly talk about how the HMB can
be disabled in Section 6 and conclude in Section 7.



2 Background

In this section we provide background on Rowhammer, solid state drives and
flash memory, the flash translation layer flash memory requires and the host
memory buffer that caches recently used translations.

2.1 Rowhammer

Rowhammer is a vulnerability of modern DRAM [19]. DRAM stores bits as
charge in an array of capacitors. These capacitors are accessed through a tran-
sistor. Frequent accesses to DRAM rows injects electrons into the substrate,
where they can travel to neighboring rows’ transistors, opening them slightly.
This increases the discharge rate of the connected capacitors. If the charge de-
creases too much before the next refresh happens, the stored bit flips. Row-
hammer is a highly researched topic, with a large number of exploits [4, 6–8,
11, 12, 14, 20, 22, 25, 26, 29, 34, 35] as well mitigations [2, 3, 13, 21, 30, 36] shown
in the past. For Rowhammer to cause bit flips, enough accesses must be made
to the rows neighboring the victim row to cause enough discharge. This limit
is called the maximum activation count (MAC). While this limit shrinks with
every new DRAM generation, from more than 100 000 on DDR3 to only 10 000
on LPDDR4 [27], more advanced mitigations require more complex and frequent
dummy accesses [7, 11].

2.2 Solid State Drives and NAND Flash Memory

Solid state drives (SSDs) are storage devices that use solid-state flash memory
instead of spinning disks in hard disk drives (HDDs), to persistently store data.
This has the big advantage that it is mechanically more robust and enables much
higher random input/output operations per second (IOPS).

In contrast to HDDs, the NAND flash memory cannot be randomly written.
The mechanisms to set bits to 1 (erasing) and setting them to 0 (programming)
is different. In its empty state NAND memory is erased and stores all 1’s. To
write data to the memory, bits are programmed to 0. Reprogramming is possible
as long as the new data is a subset with only 1 to 0 transitions.

Reading and programming typically happens in sizes of 512B, 2 048B or
4 096B, called a page. However, erasures must happen in blocks of 32, 64 or
128 pages and take considerably longer. These erasures also slightly damage the
NAND cells each time. Therefore, flash memory has only a limited number of so
called program-erase cycles (P/E cycles). To extend their lifespan, SSDs perform
wear-leveling, where the erasures are evenly distributed over all blocks.

2.3 Flash Translation Layer

To efficiently work with the different sizes for erasing and programming data and
perform wear leveling, flash memory does not one-to-one map logical addresses
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Fig. 2: SSDs with a host memory buffer use a small fraction of the host DRAM
to cache recently used FTL translations. This slower but cheaper than a separate
DRAM chip on the SSD.

to the actual physical addresses of the NAND memory blocks and pages. Instead,
data is scattered all over the flash memory, requiring a translation layer between
the logical and physical addresses, called a flash translation layer (FTL). Figure 1
shows the basic concept of the FTL.

Every time the data is read from or written to the SSD, the logical addresses
coming from the host must be translated to the physical address with the FTL.
Therefore, the latency of FTL accesses has a significant impact on the SSD’s
performance, especially for random accesses. Therefore, SSDs use different caches
to decrease FTL access latency. “Pro”-grade SSDs come with a DRAM next to
the SSD controller, large enough to contain the whole FTL. When starting, the
SSD copies the whole FTL into the DRAM and only reads it from there, greatly
increasing random IOPS. Because this DRAM chip adds cost, a feature called
host memory buffer (HMB) was introduced with NVMe revision 1.2 [28].

2.4 Host Memory Buffer (HMB)

NVMe SSDs, being PCIe devices, can use direct memory accesses (DMA) to
access the host DRAM without CPU involvement. This is used to enable the
host memory buffer (HMB) feature that allows SSDs to use a small part of the



main memory to cache FTL translations [28]. Access to the main memory are
slower than accesses to DRAM integrated on the SSD itself but they are still
faster than having to access the flash memory for every FTL translation. The
HMB is a cache and typically not large enough to hold the whole FTL. HMB
support was introduced into the Linux kernel in 2016 [5].

The standard does not mention what the contents of the HMB should be.
This is intellectual property of the SSD controller manufacturers and entirely
undocumented. There is no research on the HMB yet, except for its performance
impact [15–18].

Estimating the circulation of SSDs supporting the HMB feature as difficult,
as even SSD manufacturers do not always document HMB support for their
SSDs. Of the approximately 20 SSDs we checked, four support the HMB feature.

2.5 Input-Output Memory Management Unit (IOMMU)

A memory management unit in modern CPUs virtually partitions and protects
the main memory, that is actually physically shared between all processes. In
protected and long mode, page tables are set up by the operating system, to
define exactly which process is allowed to access which memory pages [10]. On
x86-64 a normal page is 4 kB large, this is the smallest unit the main memory
can be partitioned into. The MMU also allows the operating system to track the
usage of pages by its process with the dirty and accessed bits, that are automat-
ically updated by the MMU hardware if a page is written or accessed [10].

With the introduction of hardware assisted virtualization, Intel and AMD
not only introduced a second level of pages tables to translate guest physical to
host physical addresses but also mechanism to partition and protect the physical
memory accessed by DMA capable devices. Intel calls this feature Intel Virtu-
alization Technology for Directed I/O (VT-d) [9] and AMD I/O Virtualization
Technology (AMD-Vi) [1]. At the heart of both is a Input-Output Memory Man-
agement Unit (IOMMU), that uses very similar page tables than the MMU with
a similar feature set.

3 Attack Overview and Threat Model

In this section, we illustrate how a successful attack would look like with all
components of the attack working as shown in Figure 3. The basic idea, especially
the exploit of the ext4 file system, is based on the work by Zhang et al. [37].
However, they used an SSD simulator with simulated integrated DRAM and no
HMB, while we perform our experiments on real SSDs with the HMB feature.
The attacker has the permissions to create and read files from a file system on
the target SSD. It has no other privileges. By frequently accessing specific files,
they create an access pattern to the SSD, that forces the SSD to access the HMB
frequently. These accesses to the HMB are frequent enough to cause a bit flip
in the FTL. This changes one logical to physical page mapping of the HMB.
With some luck, the new mapping either points to a file of interest, for example,
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Fig. 3: The complete exploit chain, if every step worked. The attacker accesses
specific files on the file system (FS) 1 . The SSD has to access the HMB to
translate the logical block addresses requested by the file system driver to the
physical addresses of the NAND blocks 2 . These accesses to the HMB cause
enough Rowhammer accesses to flip a bit in the translation stored in the HMB,
changing one mapping 3 . This changed mapping allows the attacker to access
the block where the secret file (black) is stored at through another file, either

directly 4 or by getting access to a mapping block of the file system.

Table 1: The SSDs used in our experiments.

SSD PCIe Revision Size HMB Size IOPS1

Samsung 990 EVO 4.0 2TB 64MB 680 000
Lexar NM790 4.0 2TB 40MB 1 000 000
Samsung 980 3.0 1TB 64MB 500 000

1 Read IOPS with maximum queue depth as advertised by the manufacturer.

containing a secret key or it points to a internal mapping file of the file system.
This could give the attacker access to every file on the file system. In this work
we show, that neither flipping bits to change an FTL mapping, nor hammering
with the SSD works with real SSDs.

4 Reverse Engineering the HMB

In this section, we reverse engineer how SSDs are using their HMB, how bit flips
in the HMB memory area influence translations and how more complex HMB
modifications can revert FTL mappings. Table 1 shows the SSDs used in this
work. All of them use different SSD controllers supporting the HMB feature.

4.1 Tooling

The HMB specification only defines the very basic principles on how the SSD can
request host memory from the operating system and how the operating system



1 # cat /sys/block/nvme0n1/device/hmb_addresses
2 0 cfc00000 400000
3 1 cf800000 400000
4 ...
5 14 cc400000 400000
6 15 cc000000 400000

Listing 1.1: A part of the output of /sys/block/nvmeXn1/device/hmb -

addresses. The first column is the memory chunk index, the second the I/O
virtual address, and the third the length.

1 # cat /sys/kernel/debug/iommu/amd/iommu00/0000:01:00.0/page_tables
2 ...
3 0x00000cc000000 | 0x0 0x0 0x6000000101e7b421 0x6000000101e9f221 0x7000000113000021
4 0x00000cc001000 | 0x0 0x0 0x6000000101e7b421 0x6000000101e9f221 0x7000000113001021
5 0x00000cc002000 | 0x0 0x0 0x6000000101e7b421 0x6000000101e9f221 0x7000000113002021
6 0x00000cc003000 | 0x0 0x0 0x6000000101e7b421 0x6000000101e9f221 0x7000000113003021
7 0x00000cc004000 | 0x0 0x0 0x6000000101e7b421 0x6000000101e9f221 0x7000000113004021
8 ...

Listing 1.2: A part of the output of /sys/kernel/debug/iommu/amd/iommu00/-
0000:01:00.0/page tables showing five levels of page table entries.

responds to these requests [28]. The operating system or any other process must
not access the memory reserved for the HMB [28]. How the SSD uses the HMB
is completely vendor specific and undocumented. In this section we describe the
changes to the Linux kernel and our user space tools we use to gain more insight
into how the HMB is used.

Linux Kernel Modifications We modify the Linux kernel version 5.15 and
utilize the IOMMU to get detailed insight on how different SSD controllers use
the HMB.

HMB Mapping. When the Linux kernel reserves memory for the HMB, it does so
with the DMA ATTR NO KERNEL MAPPING flag, not mapping the reserved memory
because the specification prohibits its access anyway. As we want to know and
change the HMB content in our experiments, we add a device attribute to the
NVMe driver that prints the physical addresses of the memory chunks reserved
for the HMB. The attribute is accessible through the sysfs file /sys/block/-

nvmeXn1/device/hmb addresses. Listing 1.1 shows the output with the I/O-
virtual addresses because the IOMMU it active. The operating system reserves
16 memory chunks, 4MB each for the 64MB HMB of the Samsung 990 EVO.

HMB I/O Page Tables. With the IOMMU active, the SSD accesses I/O virtual
addresses that are translated to physical addresses on each DMA access. To map
the HMB in user space, we also have to translate the I/O virtual to the physical
addresses. Additionally, we want access to the I/O page table entry’s accessed



(A) bits to get detailed information about which pages the SSD accessed. To do
this, we need access to the IOMMU page tables. The Intel IOMMU Linux driver
already comes with a DebugFS interface to dump all page tables levels for a
device at /sys/kernel/debug/iommu/intel/{PCI ADDRESS}/page tables. For
the AMD IOMMU driver we wrote our own in a similar fashion. Listing 1.2
shows a part of the output of the Samsung 990 EVO.

Page Table Entry Accessed Bit. According to Intels IOMMU documentation,
the accessed (A) and dirty (D) bits are always set in page tables entries [9].
However, we did not see the A or D bits being set on any of our Intel CPUs. The
documentation does also not define a register where support for the A or D bit
can be checked or where it can be activated.

AMDs IOMMU implementation can set the A and D bit if supported by the
CPU and activated by the driver [1]. Support is specified by bits 49 (HASup) and
52 (HDSup) in the IOMMU Extended Feature Register and can be activated in
bits 47:46 (HADUpdate) in the IOMMU Control Register. We added the check
for support and activation to the AMD IOMMU kernel driver. We found that
only Zen 3 CPUs support the A and D bit in their I/O page table entries. Neither
Zen 2 nor Zen 4 CPUs do. Therefore, we use an AMD Ryzen 7 5800X for all of
our experiments in this work.

IOMMU Page Size. The AMD IOMMU supports additional page sizes between
the 4 kB, 2MB and 1GB of the conventional MMU. This can improve perfor-
mance, because less page table entries are required to translate other buffer sizes.
To get the best resolution for the A bit, we change the AMD IOMMU driver to
only support and map 4 kB pages. With the Intel IOMMU driver this behavior
can be forced with the kernel command-line parameter intel iommu=sp off.

User Space Tools In user space, we parse the outputs of /sys/block/-

nvmeXn1/device/hmb addresses and /sys/kernel/debug/iommu/amd/iommu-

00/{PCI ADDRESS}/page tables and map the memory for the HMB and the
last level page table entries with PTEditor [31]. This gives us read and write
access to the HMB content, as well as the page table entries with the A bit.

4.2 HMB Usage

To get more insight into how the HMB is used by the different SSDs, we per-
formed many experiments reading and writing to the SSD while observing how
the HMB contents change and which pages were accessed. We shortly summarize
the most important insights for this work on our three SSDs.

Samsung 990 EVO. The Samsung 990 EVO, like the other two SSDs, uses
the HMB only to cache FTL translations. Listing 1.3 shows a small fraction of
the HMB content after reading 100000 random pages from the SSD. There is
definitely structure recognizable in this data, however, we keep a detailed analysis



1 0x3f73000: 30ae30d030ae30c 30ae30f030ae30e 30aa3100036c500 30aa312030aa311
2 0x3f73020: 30ae310030aa313 30ae312030ae311 1eeae9030ae313 30aa315030aa314
3 0x3f73040: 30aa317030aa316 30ae315030ae314 30ae317030ae316 50aa30c001e5677
4 0x3f73080: 50aa30e050aa30d 50ae30c050aa30f 50ae30e050ae30d 3d1ee8b050ae30f
5 0x3f73080: 50aa311050aa310 50aa313050aa312 50ae311050ae310 50ae313050ae312
6 0x3f730a0: 50aa31403f9c162 50aa316050aa315 50ae314050aa317 50ae316050ae315
7 0x3f730c0: 3f97dfc050ae317 70aa30d070aa30c 70aa30f070aa30e 70ae30d070ae30c
8 0x3f730e0: 70ae30f070ae30e 70aa310001ef7f2 70aa312070aa311 70ae310070aa313

Listing 1.3: Content at HMB offset 0x3f73000 after reading 100000 random pages
from the SSD.

of what it means for future work. The HMB is split into four sets, 16MB large,
each set uses a last-recently used (LRU) cache replacement policy. The “cache-
line” size is one page, i.e., 4 kB. Every time a new translation is cached at least
4 kB are written and we also suspect that always at least 4 kB are read from the
HMB. The Samsung 990 EVO also contains a small on-chip cache that caches
approximately 140 pages of translations for even faster accesses. The SSD is
often loading multiple pages from the HMB, this is probably a performance
optimization similar to an adjacent line prefetcher inside a CPU.

After not accessing the SSD for around 100ms the HMB is completely reset.
The content is not actually cleared, but when accessing the SSD again, the HMB
is filled from the first page of every set again. This makes the HMB accesses very
predicable, because they can always be reset by sleeping.

Lexar NM790. The Lexar NM790 uses a LRU HMB eviction policy similar
to the Samsung 990 EVO. However, it uses the HMB as one single set. We also
only see accesses to one or, most of the time, multiple 4 kB pages. The on-chip
cache has a capacity of approximately 20 pages.

Samsung 980. The Samsung 980 also accesses the HMB in blocks of at least
4 kB. However, it does not use LRU HMB eviction. The mapping between the
logical addresses and where their translations are stored in the HMB seems to
be more rigid. We did not reverse engineer a set function but were able to find
“cache thrashing” access patterns, where each access to the SSD, accesses the
same HMB page due to this more rigid mapping. We detail and use this pattern
for our hammer attempts in Section 5.1.

4.3 Simulating Rowhammer Bit Flips

In this section, we artificially flip bits in the HMB to observe how the SSD reacts.
We find that every one of our tested SSDs locks up as soon as it detects the bit
flip. We even broke one SSD that we could not get back working.

For this experiment, we map the memory reserved for the HMB writeable
and write to it from our user space program. We want to simulate the effects
a successful Rowhammer attack would have on the FTL of the SSD. As the



1 [ 30.920489] nvme nvme2: Device not ready; aborting initialisation, CSTS=0x0
2 [ 30.920517] nvme nvme2: Removing after probe failure status: -19

Listing 1.4: The kernel log output when the kernel tries to initilize the broken
Samsung 980 during boot.

physical location of the HMB is allocated once at boot time, it does not move
while the operating system is running. We also found the location of the HMB
being the same most of the time, as well as being surrounded by other kernel
mappings. This means that an attacker has no way to template the memory, the
HMB is later stored at, for viable bit flip locations. Therefore, we randomly flip
one or two bits at random locations in the HMB.

When flipping bits in the HMB, the SSD does not directly react. If it does not
need the HMB page with the bit flips anymore, it just gets evicted. In this case,
the bit flips are never detected and accessing the SSD page corresponding to the
HMB page later, loads the unmodified data back into the HMB. An attacker
would avoid this in an attack scenario.

SSD Lock Up. By reading the SSD page, corresponding to HMB page with the
bit flip, after reading some other SSD pages to evict the on-chip cache, the HMB
page with the bit flips is read by the SSD. In this case, all of our tested SSDs
instantly lock up. We suspect that a checksum of each page in the HMB is stored
in the SSD controller. All requests to read or write data are never responded and
simply time out. Also other NVMe commands sent with the nvme-cli tool are
ignored. Resetting the controller or subsystem with with nvme reset or nvme

subsystem-reset did not reverse the lock up. Also rebooting or turning the
machine off and, after some time, on again, does not reset the SSDs and reverse
the lock up. We found that only a real power cycle, unplugging or turning of the
PSU of the computer brings the SSDs back. It seems like that even a turned off
computer still supplies PCIe devices with power, preventing a reset of the SSDs.

Breaking SSDs. During our experiments we permanently broke one Samsung
980 SSD. With a combination of blkdiscard commands and writes to the HMB,
the SSD locked up and does not work anymore, even after power cycles. It does
not respond to any commands and the kernel gives up initializing it during boot.
Listing 1.4 shows the kernel log output. For budgetary reasons, we did not further
investigate the exact course of events to reproduce the issue a second time.

Discussion. Our experiments show that the ext4 exploit by Zhang et al. [37],
that requires a remapping of flash memory blocks because of bit flips, is not
possible when hammering the HMB. However, already a single bit flip in the
HMB requires a power cycle of the whole machine. This can lead to a denial of
service in the best case and a corrupt system or data loss in the worst case if the



1 0x228f500: 0xb4691cd680300010 0x39ad3a4735a548e6 0x548f6b4691ed6852 0xd6a523dad3a47b5a
2 0xb4691cd68630000c 0x39ad3a4735a548e6 0x548f6b4691ed6852 0xd6a523dad3a47b5a
3 0x3a111e0: 0x08de003a1613149e 0x1da9144607d70994 0x02851bba1159092f 0x027f04530e801f2d
4 0x08de003a1613149e 0x1da914460bc40994 0x02851bba1159092f 0x027f04530e801f2d

Listing 1.5: Changes in the HMB after writing to one SSD page. Unchanged
bytes are in gray, changed bytes are in red (previous value) and green (new
value). Four bytes change in total in two different pages. Resetting these bytes
to their previous value maps the previously used block.

operating system is not able to flush dirty data to the disk. In a more advanced
attack, an attacker could try to coerce the operating system to send frequent
discard commands to trim the SSD. The attacker hammers the SSD at the same
time to break the SSD, causing physical damage on a modern computer only
from software. This would also be possible for an attacker that already gained
elevated privileges and can write to the HMB through the direct physical map.

4.4 “Unwriting” Data

By carefully changing data in the HMB, we managed to “unwrite” data on the
Samsung 980 SSD. To do this, we stored the HMB content before writing to one
SSD page. This write changes four bytes in the HMB, as shown in Listing 1.5.
Changing these bytes to any other values locks up the SSD, except for one
change. If we reset the changed bytes to their previous values, the FTL mapping
is reset to the old value. Reading the previously written SSD page returns the old
content of the page. As the HMB content is never written back to the SSD, this
change is not persistent. After the eviction of the modified HMB page, reading
the SSD page again returns the new content.

Being able to perform a replay attack like this, conflicts with our hypothesis
that the pages cached in the HMB are simply protected with a checksum that
is stored in the SSD controller. A few bits of the changed data could also be
checksum bits. However, as changing data like this is far outside the reach of
Rowhammer bit flips, we did not further investigate this effect.

5 HMB Rowhammer

While actual privilege escalation with the ext4 exploit [37] with bit flips in the
HMB is very unlikely due to all SSDs instantly locking up, a denial of service
attack or maybe even breaking SSDs is possible with flips in the HMB. However,
we show that the maximum achievable accesses from the SSD to the HMB are
not high enough to flip bits, even on highly vulnerable DRAM.

5.1 Generating Hammer Accesses

In this section, we show how we can cause targeted Rowhammer accesses from
the different SSDs to the HMB. All SSDs behave differently and require different
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Fig. 4: HMB priming and hammering on the Samsung 990 EVO.

accesses patterns to frequently access the HMB. We achieve the fastest accesses
on the Samsung 980, with 4 992 hammer accesses per refresh interval.

Samsung 990 EVO. This SSD uses a LRU cache eviction policy and four 4
sets for its HMB. The LRU algorithm makes it possible to prime the cache with
translations and then later accesses the pages with the cached translations to
get double-sided Rowhammer accesses.

Figure 4a shows the cache priming and hammering. In the priming phase, we
sequentially access contiguous pages on the SSD, storing where they caused an
HMB accesses. The SSD shows interesting behavior, visible as a stair pattern. At
some accesses to the SSD, it accesses up to 8 pages in the HMB. We expected
that these 8 pages are loaded into the on-chip cache and the SSD would not
accesses the HMB for them again. But instead, we see that after accessing 32
pages on the SSD, the SSD accesses the HMB again, loading the same pages.
It seems like the on-chip cache caches the data for a only 32 accesses. We could
not think of a reason why this would be of an advantage. The SSD then slowly
reduces the number of pages it accesses until it accesses only a single page Then
it accesses the next 8 HMB pages. With this slope being constant and it always
starting the same way, we compute exactly how many SSD pages we have to
access to prime the HMB for double-sided Rowhammer accesses.

For this example, we assume very simple DRAM addressing functions, where
two pages, 32 pages apart, hammer the page exactly in the middle. If we want to
hammer HMB page n, we first prime the cache by accessing (n+16) ·3640 pages
on the SSD, e.g., from the beginning. 3640 is the slope of the priming-slope.
Then we only have to access the SSD pages (n − 16) · 3640 and (n + 16) · 3640
to cause the pattern shown in Figure 4b. While we figured out these steps with
our modified kernel to get the accessed pages with the IOMMU, they are always
repeatable and can, therefore, also be executed by an unprivileged attacker.
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Fig. 5: HMB priming and hammering on the Lexar NM790.

This access pattern seems to hit some internal bottleneck of the SSD. Per-
forming it asynchronously with maximum queue depth, reduces the IOPS to
135 000. This is one firth of the advertised 680 000. This results in less than 300
hammer accesses to the two aggressor rows per 64ms refresh interval.

135 000 IOPS · 64ms

31Dummy Accesses
= 280Hammer Accesses

Checking Asynchronous HMB Accesses. Figure 4 was measured with synchronous
SSD accesses to get exactly which access to the SSD cause which HMB accesses.
With asynchronous SSD accesses with large queue depths, it is impossible to
check the A bit in the IOMMU page tables for each SSD accesses. Instead, in
another thread we periodically reset all the A bits in all page table entries map-
ping the HMB, flush the IOTLB and check them again without any added delay
in-between. It takes only 26µs to check all A bits after flushing the IOTLB. We
constantly see the same HMB pages being accessed during this small interval,
giving us high confidence that the SSD is actually accessing the HMB also when
we perform the SSD accesses with large queue depths.

Lexar NM790. The Lexar SSD also uses a LRU replacement policy. However,
it never accesses HMB pages that are cached on the on-chip cache. Therefore,
we have to perform on-chip cache eviction. We also use sequential SSD accesses
to prime the HMB and then access two specific SSD pages to hammer the HMB
and in-between accesses to other SSD pages to evict the on-chip cache. Figure 5a
shows the priming and hammer accesses. Because the Lexar SSD’s HMB state
cannot be “reset” by simply sleeping, the HMB priming does not start from zero.
This gives us less control over what exactly is hammered and also how many
pages are accesses for the hammer accesses. As shown in Figure 5b multiple
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Fig. 6: The hammer accesses from the Samsung 980. The first access to the SSD
causes many HMB accesses. Then it takes 360 accesses for the SSD to “settle
in”. Afterward, every single access to the SSD, causes the SSD to access pages
around index 3 606 and 14 854 of the HMB.

pages are accesses for each aggressor. We find that the on-chip cache is evicted
after accessing 20 other SSD pages and achieve up to 717 double-sided hammer
accesses per refresh interval.

112000 IOPS · 64ms

10Eviction Accesses
= 717Hammer Accesses

Samsung 980. The Samsung 980 does not use an LRU cache eviction policy.
Neither in the HMB nor in the on-chip cache. This helps us to achieve our fastest
Rowhammer accesses of almost 5 000 hammer accesses per refresh interval. On
the Samsung 980 it is possible to access specific pages of the SSD, so that each
access to the SSD makes the SSD access the HMB, as shown in Figure 6. Each
access to the SSD causes the “hammer”-accesses in red to the HMB.

To do this, we take two addresses, 37 200 kB apart, and access them alter-
nately, adding 1 200 kB after each accesses. After 32 accesses, we start again
with the initial two addresses. Table 2 shows the pattern of SSD accesses and
the HMB accesses they cause. This pattern leads to the SSDs accessing the same
pages in the HMB on each SSD page access, perfect for hammering.

However, these special patterns reduce the IOPS to around 78 000 from the
advertised maximum of 500 000. But even then, if every one of these accesses
to the SSD cause an access to the HMB, we still reach close to 5000 hammer
accesses per refresh interval.

78000 IOPS · 64ms = 4992Hammer Accesses

While our thread that checks the accessed bits asynchronously is a good indicator
of the HMB accesses from the SSD, we use a combined Rowhammer experiment
to measure the real impact of the HMB accesses on Rowhammer bit flips.



Table 2: Accessing these pages on the SSD causes these HMB accesses. PageA
and PageB are 37 200 kB apart and the step-size is 1 200 kB. After PageB+15 ·
step we accesses PageA again. The accesses to 512− 519 every 8th time can be
seen in Figure 6 as the blue dots at the bottom.

Accessed SSD Page Accessed HMB Pages

PageA 512− 519, 3606− 3607, 14848− 14855
PageB 3605− 3607, 14854− 14855

PageA+ step 3606− 3607, 14854− 14855
PageB + step 3605− 3607, 14854− 14855

PageA+ 2 · step 3606− 3607, 14854− 14855
PageB + 2 · step 3605− 3607, 14854− 14855

. . .
PageA+ 4 · step 512− 519, 3606− 3607, 14848− 14855
PageB + 4 · step 3605− 3607, 14854− 14855

. . .
PageA+ 15 · step 3606− 3607, 14854− 14855
PageB + 15 · step 3605− 3607, 14854− 14855

Software hammers Accesses to random SSD pages

Software hammers Accesses to hammer SSD pages

500ms Refresh Interval

Variable Fill Remaining Interval

Fig. 7: For the combined Rowhammer experiment, two rows are first hammered
from software. Within the same refresh interval, the same rows are then ham-
mered through the SSD’s HMB accesses.

5.2 Combined Rowhammer

To measure the real Rowhammer impact of the Samsung 980’s access to the
HMB, we perform a combined Rowhammer experiment. The idea is to combine
Rowhammer accesses from software with accesses from the SSD, as shown in
Figure 7. During each refresh interval, we first perform software accesses to get
the DRAM victim row to an access count where it starts to flip. Then, we fill the
rest of the refresh interval with accesses from the SSD to the HMB. By comparing
the number of bit flips we get with the targeted hammer SSD accesses we found
in Section 5.1 against the number of bit flips with random SSD accesses, we get
the impact of the targeted SSD accesses on the bit flip count.

For this experiment, we use an Intel Core i9-9900K for two reasons. It is
well known how to hammer on older generation Intel CPUs, and it supports
changing the DRAM refresh interval tREFI in the BIOS. The disadvantage of
the Intel CPU is that it does not set the A bit in IOMMU page table entries.
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Getting HMB Access Info on Intel CPUs. There is one other, much more
tedious way, to get the accessed HMB pages without the A bit. We just want to
ensure that the SSD still accesses the same HMB pages as it did with the AMD
CPU. We unmap the HMB pages in question by clearing the present bit in the
corresponding IOMMU page table entries. Now, when we perform our hammer
SSD accesses, the SSD tries to access the unmapped HMB page. The IOMMU
raises an interrupt and the handler prints the violating access to the kernel log,
where we can see that the SSD tried to access the expected HMB page. However,
the SSD’s DMA access fails and it locks up until a full power cycle. Nevertheless,
we confirmed that the SSD accesses the HMB pages found in Section 5.1.

Experimental Setup. We maximized the refresh interval to approximately
500ms from the default 64ms. This increases the number of hammer accesses
achievable with the Samsung 980 to up to 38 500 per refresh interval.

We want to sweep the victim row through DRAM, to get as much bit flip data
as possible. To achieve this, without having to find more SSD page patterns that
cause HMB accesses at different offsets, we use the IOMMU to remap pages
3 606 and 3 607. We always map the pages to physical locations that perform
double-sided Rowhammer. When remapping the HMB pages, we also have to
copy the content to the new physical location to keep the HMB consistent. This
creates a short race condition, where the SSD crashes sometimes. We set up a
service that automatically power cycles the computer when this happens.

After remapping the aggressor HMB pages, we start with 2 088 000 software
accesses, filling the rest with SSD accesses. The 2 088 000 take up approximately
half of the refresh interval. We hammer the same victim row 6 times, randomized
3 times with random SSD accesses and 3 times with our targeted SSD accesses,
always resetting the victim data in-between, by writing the inverted binary data
from the above aggressor row into it. Then, we reduce the software accesses by



15% and hammer the same victim row again. We repeat this 12 times, down
to 349 000 software accesses. Finally, we go to the next victim row, remap the
aggressor HMB pages, and start again with 2 088 000 software accesses.

Results. Figure 8 shows the results from the combined Rowhammer experiment.
The bar hight shows the number of bit flips with either random accesses to the
SSD or the hammer accesses to the SSD. The percentage above the bars shows
the change with the hammer accesses. We measured 19 432 bit flips in total.

There is a small but clear increase in the number of bit flips with the SSD’s
hammer accesses. Over all numbers of software hammers, the increase in bit flips
is 3.4%, from 9 555 to 9 877. This shows that the SSD’s accesses to the HMB do
actually hammer the DRAM.

Hammer Effectiveness. We can compute the effectiveness of the SSD’s HMB
hammers. Using the bit flip counts with random SSD accesses from Figure 8,
we can calculate that an increase of 1 000 software accesses, increases the bit
flip count by 1.8 on average. Now we can calculate by how much the SSD HMB
hammers increase the bit flip count. For this we look at the results with 1 089k
software accesses.

1 089k software accesses take approximately 130ms, leaving 370ms for the
SSD accesses to the HMB within one refresh interval. The SSD hammers with
78 000 IOPS for these 370ms, causing HMB 28 860 accesses.

At 1 089k software accesses, we measured 436 bit flips with random SSD
accesses and 491 with hammer SSD accesses, an increase of 55 bit flips or 13%.
Knowing that 1 000 software accesses increases the bit flip count by 1.8, we
calculate the equivalence of SSD accesses to the HMB to software accesses.

1000 software accesses

1.8 bit flips
· 55 bit flips = 30556 equivalent hammer accesses

The SSD causes 28 860 HMB accesses, meaning that the SSD’s HMB accesses
are equivalent to software acesses.

Discussion. This show clearly that the SSD can hammer the DRAM through
the HMB very effectively. However, the IOPS and, therefore, the access count is
not high enough to induce bit flips without additional software accesses. There
is currently no threat model where an unprivileged attacker could get access to
the memory where the HMB is mapped to perform additional software accesses.
Furthermore, we used the IOMMU to map two HMB pages to exact locations
to perform double-sided Rowhammer.

6 Mitigations

In this section, we show that the HMB can easily be disabled on Linux to mitigate
these attacks and discuss the impact of state-of-the-art Rowhammer mitigations
on HMB Rowhammer.



Disabling the HMB. The HMB is specified as an optional feature for the SSD:
“The controller shall function properly without host memory resources.” [28].
The only downside is a reduced performance, as shown by previous work [15–18].
On Linux the HMB can be turned off for all SSDs attached to the system with
the kernel command-line parameter max host mem size mb=0 [23].

Existing Rowhammer Mitigations. Modern DDR4 and DDR5 DRAM comes with
on-die Rowhammer mitigations like TRR. To evade these mitigations, compli-
cated access patterns are required that “confuse” the TRR mechanism so it
tracks and refresh other dummy rows instead of the actual victim row [7,11]. To
perform these access patterns, high timing accuracy as well as synchronization
with refreshes is important. Additionally, Kang et al. [14] showed that modern
Intel CPUs also contain a undocumented Rowhammer mitigation that can only
be evaded by hammering multiple banks simultaneously. This means, that while
only a few thousand accesses to the actual attacker rows are sufficient on modern
DRAM, overall, the whole access pattern to actually cause bit flips on modern
system still consists of many more accesses. Currently, we do not see a possibil-
ity to achieve the high number of required accesses, to the many different rows,
synchronization with refreshes, and hammering multiple banks simultaneously
when using HMB hammer.

7 Conclusion

Rowhammer is a long standing security vulnerability. Although, there is count-
less research on attacks, only very few works looked into the risk coming from
devices peripheral to the CPU that can also access the DRAM. This work is the
first one that analyzes the SSD as a potential victim or confused deputy attacker
of a Rowhammer attack. With the introduction of the HMB feature, NVMe SSD
can access the DRAM through DMA to cache FTL translations. We show that
bit flips in the HMB are unlikely to lead to privilege escalation attacks but can
force a system to power cycle or even break hardware. We also show how our
tested SSDs can be coerced into accessing the HMB with a high frequency. On
the Samsung 980 we achieve 5000 accesses to the HMB per 64ms refresh interval.
In the combined Rowhammer experiment, together with Rowhammer accesses
from software, we see a clear impact of the HMB accesses from the SSD on the
bit flip count. This shows that, in theory, an SSD could hammer the DRAM but
it very unlikely on modern DRAM with active Rowhammer mitigations.
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